EW Stawiski, A Paquet, JM Whitcomb, E Coakley, CJ Petropoulos, M Haddad

Presenting Author. Monogram Biosciences, Inc.
Presenting Author. Monogram Biosciences, Inc.
345 Oyster Point Blvd., South San Francisco, CA 94080
estawiski@monogrambio.com

174t International HIV Dynamics \& Evolution Conference
monogrom

Monterey, CA
April 25-28, 2010

BACKGROUND

-Darunavir/r (DRV) is a next generation protease inhibitor PI which has shown activity against many HIV-1 strains with multiple PI resistance associated mutations (RAMs).
-International AIDS Society (IAS) guidelines for mutations associated with DRV are commonly used to determine resistance to the drug. -The purpose of this study was to examine DRV resistance patterns over time by surveying Monogram's patient testing database.

METHODS

-We examined samples submitted for routine phenotypic and genotypic patient testing that had a DRV fold change (FC), fold change of IC50 relative to a reference, greater than the lower clinical cutoff ($\mathrm{FC} \geq 10, \mathrm{~N}=2,665$).
-Samples were collected from mid-2006 through March 2010 and were grouped by quarter. -We considered 11 IAS DRV mutation trends (V11I, V33I, L33F, I47V, I50V, I54L/M, T74P, L76V, I84V, L89V) with phenotypic response.
-Average frequency of each mutation per quarter was calculated, as well as the mean DRV FC and total count of IAS DRV mutations
-Significance of trends was evaluated using the Jonckheere-Terpstra test.

RESULTS

- Figure 1: Amongst DRV resistant samples, resistance is increasing but the overall number of samples is decreasing

- Figure 3: Temporal trends in DRV IAS mutations amongst DRV resistant samples

Table 1: Test for trends amongst DRV IAS mutations

	DRV Resistant		DRV Sensitive		DRV IAS mutations tested for trend using the JonckheereTerpstra test. P-values were corrected for multiple testing using the Bonferonni method. E35N and V11L were no longer significant with the expanded time points. DRV Sensitive samples were del DRV as having at least 1 DRV IASmutation and a DRV FC <10 Note that repeat patient samples were not removed from the dataset.
IAS Mutation	p-value	Trend	p-value	Trend	
V11I	0.524		0.645		
V321	0.001	UP	1.000		
L33F	1.000		1.000		
147V	0.958		1.000		
150 V	1.000		1.000		
154L	0.001	UP	0.129		
154M	0.958		1.000		
G73S	0.645		0.009	DOWN	
L76V	1.000		1.000		
184 V	1.000		0.009	DOWN	
L89V	0.099	UP	1.000		

RESULTS

-While the overall number of samples with phenotypic resistance to DRV declined over the last 16 quarters, amongst isolates with DRV FC ≥ 10, the mean number of IAS DRV RAMs increased from 2.7 in Q2 2006 to 4 in Q1 2010 (p-value <0.001) while DRV FC increased from a mean of 38 to 151 (p-value < 0.001).
-A significant increase in prevalence within IAS mutations was found for V32I, 154 L (p-values $=0.001$) after correcting for multiple testing.

Figure 2: Mean DRV FC amongst DRV resistant samples tracks well with an increase in the average number of DRV mutations

- Figure 4: Temporal trends in DRV IAS mutations amongst DRV sensitive samples with a minimum of at least 1 mutation

Figure 5: Co-variation analysis amongst DRV IAS mutations

CONCLUSION

-We observed changes in the DRV resistance landscape over time.
-These results can highlight the potential utility of periodic surveillance of HIV drug resistance to optimize interpretative algorithms.

