

MILLER SCHOOL OF MEDICINE UNIVERSITY OF MIAMI

ASCO 2012 # 608

Correlation of quantitative p95HER2, HER3, and HER2 protein expression with pathologic complete response (pCR) in HER2-positive breast cancer patients treated with neoadjuvant (NEO) trastuzumab containing therapy

Monogram
Blosciences
LabCorp Specialty Testing Group

JC Villasboas¹, J Hurley¹, JM Weidler², A Paquet², C Gomez-Fernandez¹, M Cioffi¹, J Sperinde², A Chenna², M Haddad², Y Lie², J Winslow², W Huang², C Petropoulos², M Pegram^{1‡}

¹University of Miami Sylvester Comprehensive Cancer Center, Miami, FL; ²Monogram Biosciences / Integrated Oncology, South San Francisco, CA; [‡]Current affiliation: Stanford University, Stanford, CA.

Introduction

- ➤ Prognostic and/or predictive biomarkers associated with pathologic complete response (pCR) to trastuzumab (Herceptin®, Genentech) based regimens in HER2-positive breast cancer patients in the neoadjuvant (NEO) treatment setting are lacking.
- ➤ The presence of pathologic complete response (pCR) has been shown to correlate with disease-free survival in patients treated with NEO regimens¹ and is commonly used as a surrogate marker of outcome in the NEO setting.
- ➤ **Study Aim**: In this study, we sought to investigate the prognostic value of quantitative measures of HER2 (H2T), p95HER2 (p95) and HER3 (H3T) protein expression and likelihood of pCR in a cohort of patients with locally advanced, HER2-positive breast cancer treated with NEO chemotherapy and trastuzumab.
- Biomarkers of Interest
- 1. p95HER2 [HER2-M611-CTF] (p95)
- p95 is a signaling-competent fragment of the HER2 receptor arising from alternative translation at an internal initiation codon (position 611) resulting in a truncated protein lacking the extracellular domain². In pre-clinical studies, p95 has been shown to correlate with increased activation of signaling cascades³, cell migration⁴ and tumorigenesis².
- The prognostic value of p95HER2 by VeraTag® was demonstrated in 2 independent cohorts of patients with HER2 positive metastatic breast cancer treated with trastuzumab where high tumor p95 levels were associated with shorter progression-free survival (PFS) and overall survival (OS)^{5,6}.
- Limited data exist on the use of p95HER2 as a prognostic or predictive biomarker in the neoadjuvant setting.

2. HER2 / quantitative HER2 (H2T)

- HER2, by immunohistochemistry and/or in situ hybridization (FISH/CISH), is a well-described prognostic biomarker and is predictive of clinical outcomes in HER2+ breast cancer patients in metastatic and adjuvant treatment settings.
- Higher H2T levels by a novel quantitative HER2 assay (HERmark[®], Monogram Biosciences) have also been associated with shorter PFS in 2 independent cohorts of patients with HER2 metastatic breast cancer treated with trastuzumab.^{5,7}
- We previously observed an association between higher quantitative H2T levels by HERmark® and likelihood of pCR in a small cohort of patients with locally advanced HER2 positive breast cancer treated with a NEO docetaxel (T), carboplatin (C), trastuzumab (H) (TCH) regimen.⁸

3. HER3 (H3T)

 Although data are lacking in the neoadjuvant setting, higher quantitative H3T levels by VeraTag were associated with shorter PFS in a cohort of patients with HER2 positive metastatic breast cancer treated with trastuzumab.⁹

Materials and Methods

- This was a blinded, prospectively designed biomarker analysis of a retrospective cohort of patients with stage I to III breast cancer treated at a tertiary referral center in Miami.
- This study was reviewed and approved by the Ethics Committee (Institutional Review Board) at the University of Miami.
- Inclusion criteria
- Invasive Breast cancer, HER2 positive (+) (IHC 3+, or IHC 2+/FISH+)
- Pre-operative (neoadjuvant) chemotherapy regimen containing trastuzumab followed by surgery
- Available pre-therapy FFPE tumor biopsy
- Exclusion criteria
- Confirmed stage IV disease
- Refusal of surgery
- Unavailable tissue specimen
- Unavailable pCR data
- Pre-treatment FFPE breast tumor samples were assayed for quantitative H2T, p95, and H3T by HERmark® / VeraTag® assays (Monogram Biosciences). Samples with insufficient tumor area (<10mm²) or missing pCR data were excluded from analysis.
- Outcomes: pCR was defined as absence of invasive tumor in the breast at surgery;
 PFS was defined as time from start of neoadjuvant therapy to progression or censor.

Methods - VeraTag Assays

VeraTag[®] FFPE HER2 assay¹⁰ (HERmark[®])

VeraTag[®] FFPE p95 assay⁵

N = 45

Sperin

pCR Results

	N	pCR	non-pCR	p-value*
All Patients	45	21 (46.7%)	24 (53.3%)	
ER Status				
Positive	21	3 (14.3%)	18 (85.7%)	< 0.0001
Negative	24	18 (75%)	6 (25%)	
HER2 IHC				
2+ / FISH +	10	3 (30%)	7 (70%)	0.296
3+	35	18 (51.4%)	17 (48.6%)	
HERmark (H2T)				
Positive (> 17.8)	36	19 (52.8%)	17 (47.2%)	0.143
Neg /equiv (≤ 17.8)	9	2 (22.2%)	7 (77.8%)	

* Fisher Exact Test

Cohort Characteristics

Patient Characteristics	N =	N = 45	
	N	%	
Age			
	median	53	
	range:	27-73	
Menopausal status			
Pre	16	36%	
Peri	1	2%	
Post	27	60%	
Unknown	1	2%	
Ethnicity			
Hispanic	30	67%	
Non-Hispanic	11	24%	
Haitian/Caribbean Islander	2	4%	
Other/Unknown	2	4%	
Race			
African descent	13	29%	
White	19	42%	
Asian	1	2%	
Other	11	24%	
Unknown	1	2%	

Clinical/Tumor Characteristics

N	%			
nor Size (baseline, longest dimension, cm)				
median	4			
range:	1.5-14			
17	38%			
27	60%			
1	2%			
14	31%			
7	16%			
23	51%			
1	2%			
10	22%			
35	78%			
39	87%			
1	2%			
5	11%			
43	96%			
1	2%			
1	2%			
	median range: 17 27 1 14 7 23 1 10 35 39 1 5 43 1			

Quantitative H2T, H3T or p95 vs. pCR

Significantly higher levels of H2T were observed in pCR vs. non-pCR cases.

Significantly lower levels of H3T were observed in pCR vs. non-pCR cases.

Non-significant trend in higher p95 levels in pCR vs. non-pCR cases. Influence of ER?

P-value=0.0

non-pCR

Note: The dotted red lines on each plot denote the current clinical cutoffs for each assay: (H2T=13.8; p95=2.8; H3T=3.5)^{7, 5,10} Distributions were compared using 1-sided Mann Whitney test.

Quantitative H2T vs. pCR, stratified by ER status

Prediction of pCR using logistic regression

Univariate continuous	Estimate	p-value
Log10 H2T	1.3	0.045
Log10 p95 (H2T>13.8)	0.99	0.225
Log 10 H3T (all)	-0.61	0.41
Univariate categorical	Estimate	p-value
HEDmark HOT (as = 17.9)	1 26	0.42

Jnivariate categorical	Estimate	p-value
HERmark H2T (co=17.8)	1.36	0.12
o95 low (co=2.8)	-0.59	0.46
H3T low (co=3.5)	1.61	0.076
ER negative	2.89	0.00022
HER2 IHC	0.9	0.77

In univariate analyses:

- Higher quantitative H2T was significantly associated with pCR, whereas other continuous biomarkers (H3T or p95) were not.
- ER negativity was strongly associated with likelihood of pCR.

Multivariate Model for pCR

Multivariate: H2T + ER + p95	Estimate	p-value
Log10 H2T	6.1	0.012
ER negative	3.82	0.027
p95 low (co=2.8)	3.25	0.074

In multivariate analyses:

Higher H2T, ER negativity, and low p95 were independently found to correlate or trend with likelihood of pCR.

Predictive Modeling for PFS

Event rate estimate, N progression/total N in the group

- ➤ Recursive partitioning¹¹ was used to correlate continuous H2T, H3T and p95 measurements and other clinical characteristics with PFS in patients confirmed to be HER2 positive by HERmark (clinical cutoff H2T>13.8)⁷.
- Cases were classified into 2 subgroups with very different PFS outcomes, based on their quantitative H2T and p95 levels and their ER status.
- Cases with better outcomes (no progression events until censored, N=24, median follow-up=34.3 months)
- Cases that were more likely to progress (7 out of 13 patients progressed, median PFS: 10.7 months; median follow-up: 27.2 months).
- > Probabilities of progression for the subgroups derived from the optimal tree were then compared using Kaplan-Meier analysis.

Results Summary

- This study was the first analysis of the correlation between H2T, p95 and H3T and clinical outcomes in HER2+ breast cancer pts treated with trastuzumab+chemotherapy in the NEO setting. Despite the limitations of a small, retrospective dataset, interesting and significant correlations were observed:
- Higher H2T levels were observed in pCR vs. non-pCR cases (p=0.021).
- Lower H3T levels were observed in pCR vs. non-pCR cases (p= 0.038).
- Outcomes stratified by ER status:
- There was no difference in H2T levels between pCR and non-pCR in the ER-negative subset (median H2T =111.5 vs. 150.5, respectively).
- However, within the ER-positive group, patients with pCR had significantly higher H2T compared to patients with non-pCR (median H2T = 254 vs. 37.2, respectively), p=0.024.
- ➤ Multivariate models demonstrate that increasing H2T, ER-negativity, and low p95 correlate or trend with pCR (p=0.012, 0.027, and 0.074, respectively).
- ➤ An exploratory recursive partitioning analysis showed that patients who are more likely to experience disease progression could be identified using a combination of their quantitative H2T and p95 levels and their ER status.

Conclusions

- ➤ These data suggest that quantitative H2T and p95 may provide additional information on response to trastuzumab-based regimens in HER2 positive breast cancer, particularly ER+ breast cancer.
- Additional investigation into the possible relationship between quantitative levels of HER2, p95, and HER3 expression and response to HER2 targeted therapy in larger neoadjuvant cohorts is warranted.

Acknowledgements

The authors wish to thank the patients who consented to the use of their tissue specimens for research purposes and the Clinical Reference Laboratory staff at Monogram Biosciences.

References

- 1. von Minckwitz, G. et al. J Clin Oncology 1-10 (2012). doi:10.1200/JCO.2011.38.8595
- 2. Anido, J. et al. The EMBO journal 25, 3234-44 (2006).
- Pedersen K. et al. Molecular and Cellular Biology 29, 3319-31 (2009).
 Garcia-Castillo J. et al. Journal of Biological Chemistry 284, 25302-25313 (2009).
- 5. Sperinde J. et al. Clinical Cancer Research 16, 4226-35 (2010).
- Biernat W. et al. ASCO Annual Meeting 2011. J Clin Oncol 29: (suppl; abstr 586) (2011).
 Lipton A, et al. Cancer. 15 Nov; 116(22): 5168–5178 (2010).
- 8. Hurley J et al. ASCO Annual Meeting 2010. J Clin Oncol 28:15s, (suppl; abstr 586)(2010) 9. Goodman LJ et al. ASCO Annual Meeting 2009. J Clin Oncol 27:15s, (suppl; abstr 1021)
- (2009). 10. Shi Y, et al. Diagn Mol Pathol 18(1):11-21 (2009).
- 11. Therneau T, Atkinson B. R port by Brian Ripley. R package version 3.1-50. (2011). http://CRAN.R-project.org/package=rpart