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The development of a quantitative understanding of viral 
evolution and the fitness landscape in HIV-� drug resistance 
is a formidable challenge given the large number of available 
drugs and drug resistance mutations. We analyzed a dataset 
measuring the in vitro fitness of 70,08� virus samples isolated 
from HIV-� subtype B infected individuals undergoing routine 
drug resistance testing. We assayed virus samples for in vitro 
replicative capacity in the absence of drugs as well as in the 
presence of �5 individual drugs. We employed a generalized 
kernel ridge regression to estimate main fitness effects and 
epistatic interactions of �,859 single amino acid variants 
found within the HIV-� protease and reverse transcriptase 
sequences. Models including epistatic interactions predict an 
average of 54.8% of the variance in replicative capacity across 
the �6 different environments and substantially outperform 
models based on main fitness effects only. We find that the 
fitness landscape of HIV-� protease and reverse transcriptase is 
characterized by strong epistasis.

With more than 20 drugs currently licensed to treat HIV infec-
tion1 and over 200 mutations associated with drug resistance2–5, it 
is increasingly difficult to develop a comprehensive understanding 
of HIV drug resistance. Resistance mutations differ in their potency 
to resist drug pressure6,7, vary in their degree of cross resistance to 
different drugs or drug classes8 and differ in the fitness costs induced 
in the absence of treatment9–11. Moreover, their effects depend to 
varying degrees on the context of accompanying mutations7,12. The 
quantitative dissection of the fitness effects of resistance mutations in 
the presence or absence of drugs and, in particular, the determination 
how the effect of mutations depends on the presence or absence of 
other mutations thus represents a major challenge.

The delineation of epistatic interactions between mutations is not 
only a matter of the size of the dataset. The combinatorial complex-
ity of the genetic context in which any mutation appears explodes to 
a degree such that the estimation of the fitness effects is not feasible 
with standard statistical approaches, as the number of parameters to 
be estimated easily outnumbers the number of data points available 
even for the largest datasets. Problems in which the combinatorial 
complexity overwhelms standard methods of parameter inference are 

a common challenge in systems biology, and various approaches have 
been developed that allow reliable parameter estimation under con-
ditions that lead to overfitting with standard statistical approaches. 
To overcome the problem of the large number of parameters and to 
account for non-normality in the error structure, we employed here 
generalized kernel ridge regression (GKRR), a regression method, 
which, in essence, penalizes against parameters that have low explana-
tory power. We used GKRR to quantify the fitness effects of amino 
acid variants using a dataset that measured in vitro fitness of 70,081 
HIV-1 samples in the absence of drugs and in the presence of 15 
different individual drugs. The samples were obtained from HIV-1 
subtype B infected individuals undergoing routine drug-resistance 
testing (Online Methods). Our approach allows the reconstruction of 
an approximate fitness landscape of HIV protease and reverse tran-
scriptase and thus offers the first quantitative description of a large, 
realistic and biologically relevant fitness landscape.

In vitro fitness of viral isolates is measured by replicative capacity. 
Viral isolates are sequenced in amino acids 1 to 99 of protease and 1 
to 305 of reverse transcriptase (Online Methods). We quantified the 
fitness effects that are attributable to individual amino acid variants 
(main effects) and to pairwise epistatic effects between such variants 
(interactions) using GKRR. In particular we fitted two alternative mod-
els: (i) the ME model, which predicts fitness only on the basis of the 
main effects, and (ii) the MEEP model, which predicts fitness using 
both main effects and interactions. We applied GKRR because the size 
of the dataset used was too great for implementations of other regulari-
zation techniques such as the LASSO13 or Dantzig selector14.

Figure 1 shows the predictive power of the ME and MEEP models  
based on a sixfold cross validation by randomly subdividing the 
dataset into training and test sets of 65,000 and 5,000 independent 
virus samples, respectively. The goodness of the fit of the model is 
quantified by the percentage deviance explained (Supplementary 
Note, section 1.2). Deviance is the standard measure of goodness of 
fit in generalized models (that is, in models with non-normal error 
structure) and is analogous to the coefficient of determination R2 of 
linear models with normal error structure15. The predictive power 
across the environments ranges for all cross validations from 35.0% 
to 65.9% for the MEEP model and from 26.8% to 57.9% for the ME 
model. The MEEP model has an average predictive power of 54.8% 
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across all 16 environments. The MEEP model represents, on aver-
age, an 18.3% improvement in predictive power relative to the ME 
model. Note that in a regularized regression such as GKRR, increase 
in predictive power measured by cross validation is the appropriate 
model validation method. Hence, the substantial increase in predic-
tive power of the MEEP over the ME model validates the inclusion 
of epistatic terms irrespective of their large number. Our kernelized 
approach allows including higher order epistatic interactions with-
out substantial increases in computational requirements. Including 
three-way epistasis marginally decreases predictive power (data not 
shown). This decrease is due to the substantial increase in effective 
number of coefficients and does not imply that higher order epistatic 
interactions do not contribute to fitness.

We took an analogous approach to investigate the relative role of 
intragenic versus intergenic epistasis (interactions within protease or 
reverse transcriptase versus interactions between protease and reverse 
transcriptase). We fitted four models: main effects only (ME model), 
main effects + intragenic epistasis, main effects + intergenic epistasis 
and the full MEEP model (Fig. 2). Including intragenic epistasis con-
sistently led to a much greater gain of predictive power than includ-
ing intergenic epistasis. The main effects + intragenic epistasis model 
is generally as good, and sometimes even marginally better, than the 
MEEP model, which indicates that adding intergenic epistatic effects to 
the main effects + intragenic epistasis model does not further improve 
the predictive power. Decreases in predictive power are attributable 
to the fact that adding a large number of unnecessary parameters to a 
model can result in a reduction in predictive power in GKRR.

To verify that the estimates of the MEEP model are meaningful, we 
obtained sequences of protease and reverse transcriptase of treated 
and untreated patients from the Stanford HIV Drug Resistance 
Database16 (see URLs) and determined the change of frequency of 
amino acid variants in treated versus untreated patients. The change 
of frequency of amino acid variants was significantly correlated with 
the fitness gain of amino acid variants in the presence compared to 
the absence of drugs relative to the consensus sequence (P < 10−16 and 
Spearman rank correlation ρ = 0.33; Online Methods).

Because protein structure and epistasis are interrelated17,18, we inves-
tigated the relation between epistasis in the drug-free environment and 
protease structure as an independent verification that the estimates of 
the 802,611 epistatic effects are biologically meaningful. Figure 3 shows 
the strength of the epistatic effects between amino acid residues of the  
HIV-1 protease, revealing significant enrichment in epistatic interac-
tions in the flap elbow, the cantilever and the fulcrum, structural units 
that have previously been described as being important to protein 
 function19. Bootstrap analysis by random shuffling of the protein 
sequence revealed that epistasis is significantly enriched both within 
these structural domains and between the structural domains and the rest 
of the protein (P < 10−5 for both tests; Supplementary Fig. 1 and Online 
Methods). Moreover, in accordance with expectation, the strength of 
the epistatic interactions between amino acid residues correlates with 
physical proximity in the three-dimensional structure of protease  
(P = 0.00857, based on 100,000 bootstrap repeats; Supplementary  
Fig. 2 and Online Methods). The significant correlation between 
 epistasis and secondary structure or proximity shows that the estimated 
 epistatic effects are biologically meaningful. Such correlations could 
not have been produced artifactually, as our procedure includes no 
structural information for parameter estimation.

Previous studies on epistasis in viruses did not allow a comprehen-
sive quantification of individual fitness effects and epistatic interactions 
because they focused either on a limited set of interactions20, made 
use of sequence data only21 or did not correct for the effect of the 
genetic background12. Our study shows that despite the combinatorial 
complexity of the problem, biologically meaningful estimates for main 
effects and epistatic interactions can be obtained from large datasets 
that link fitness measurements to genotype. We verified the estimated 
effects using independent data. First, we showed that models including 
epistatic interactions explain on average 54.8% of the deviance in fitness 
across the 16 different environments based on sixfold cross validation. 
Second, we found a highly significant correlation between the change 
of the estimated main effects in the presence compared to the absence 
of drugs and the change in frequency of the corresponding amino acid 
variants in treated versus untreated patients based on independent data 
from the Stanford HIV Drug Resistance Database16. Finally, we found a 
correlation between epistasis and protease structural domains or physi-
cal proximity in the three-dimensional structure of protease.
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Figure 1 Analysis of predictive power. The figure shows the predictive 
power of the ME and MEEP models in a drug-free and 15 drug-containing 
environments. The predictive power is measured by the percentage 
deviance explained in a cross-validation dataset based on 5,000 
independent virus samples. The bars represent mean, and the whiskers 
represent the standard errors from a sixfold cross validation. The MEEP 
model outperforms the ME model in all environments. The drugs used 
here are the protease inhibitors amprenavir (AMP), indinavir (IDV), 
lopinavir (LPV), nelfinavir (NFV), ritonavir (RTV) and saquinavir (SQV), the 
six nucleoside reverse transcriptase inhibitors abacavir (ABC), didanosine 
(ddI), lamivudine (3TC), stavudine (d4T), zidovudine (ZDV) and tenofovir 
(TFV), and the non-nucleoside reverse transcriptase inhibitors delavirdine 
(DLV), efavirenz (EFV) and nevirapine (NVP).
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Figure 2 Analysis of predictive power of different epistatic models for four 
representative environments. The figure shows that most of the predictive 
power attributable to epistasis is in fact attributable to intragenic rather 
than intergenic epistatic interactions. In the non-nucleoside reverse 
transcriptase inhibitor environment, adding intergenic epistasis decreases 
predictive power. This decrease reflects that adding a large number of 
parameters with little or no explanatory power can reduce the predictive 
power of GKRR. The bars represent mean and the whiskers the standard 
errors from a sixfold cross validation.
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Ever since the synthesis of Darwinian evolution with genetic 
inheritance in the early 20th century, the debate about the rela-
tive role of epistasis and main effects in determining fitness has 
remained at the heart of evolutionary genetics22,23. With the advent 
of systems biology, it has become possible to measure these epistatic 
effects more comprehensively24–28. Supporting Sewall Wright’s view 
of the dominant role of epistasis22,23, we find that epistasis and, in 
particular, intragenic epistasis, is crucial in determining fitness. For 
our dataset, the inclusion of epistatic interactions improved the pre-
dictive power by an average of 18.3% across all environments. Our 
approach provides us with a predictive model for realistic fitness 
landscapes, opening up new avenues to study evolutionary adapta-
tion on complex fitness landscapes and to simulate the evolution 
of drug resistance.

URLs. Stanford Drug Resistance Database, http://hivdb.stanford.
edu; Pymol, http://www.pymol.org/; HIPAA practices of Monogram 
Biosciences, http://www.monogrambio.com/990HIPAA.aspx; the 
data management plan is found at http://precedings.nature.com/ 
documents/5668/version/1; data requests can be sent through http://
www.monogrambio.com/860ResearchAndDevelopment.aspx.

MeTHods
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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Figure 3 Cumulative strength (CS) of the absolute epistatic effects in the  
HIV-1 protease as measured in the drug-free environment. The cumulative 
effect between two positions is calculated as the sum over the absolute values 
of all epistatic interactions between the amino acid variants at those positions 
as estimated by the MEEP model. We plotted CS1.5 to enhance visual clarity. 
The regions corresponding to the flap elbow, fulcrum and cantilever, colored 
in red, yellow and green, respectively, are significantly enriched in epistasis 
(supplementary Fig. 1). The inset shows the structure of the HIV-1 protease 
(Protein Data Bank ID 1A30, rendered with PyMOL; see URLs). The region 
enriched in epistatic interaction, corresponding to the flap elbow, is somewhat 
larger than the literature description of this region19.
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oNLINe MeTHods
Data. We obtained 70,081 virus samples from HIV-1 subtype B infected indivi-
duals undergoing routine drug resistance testing29. These data were collected and 
used in agreement with HIPAA practices (for further information, see HIPAA 
practices of Monogram Biosciences and URLs). The samples were assayed for 
replicative capacity based on the construction of HIV-derived test vectors. The 
assay to measure viral replicative capacity in absence of drugs has been described 
in detail elsewhere6. In brief, patient virus derived amplicons representing all of 
protease and most of reverse transcriptase are inserted into the backbone of a 
resistance test vector. This vector is based on the NL4-3 molecular HIV clone and 
has been modified such that it can only undergo a single round of replication. 
The replicative capacity assay then quantifies the total production of infectious 
progeny virus after a single round of infection of the patient-derived virus relative 
to that of an NL4-3 based control virus. The replicative capacity of the NL4-3– 
based control virus thus equaled 1. The replicative capacity measures the total 
reproductive output relative to a control virus in a single round of replication 
and can thus be regarded as a proxy for viral fitness30.

Commonly, the replicative capacity is measured in the absence of drugs. 
For the virus samples analyzed here, the replicative capacity was also meas-
ured in the presence of 15 different single drugs at a series of drug dilu-
tions. The drugs used here were the protease inhibitors amprenavir (AMP), 
indinavir (IDV), lopinavir (LPV), nelfinavir (NFV), ritonavir (RTV) and 
saquinavir (SQV), the six nucleoside reverse transcriptase inhibitors abacavir 
(ABC), didanosine (ddI), lamivudine (3TC), stavudine (d4T), zidovudine 
(ZDV) and tenofovir (TFV), and the non-nucleoside reverse transcriptase 
inhibitors delavirdine (DLV), efavirenz (EFV) and nevirapine (NVP). For 
each drug, the replicative capacity of a virus on drugs was given by the 
interpolated value measured at the drug concentration at which the NL4-3– 
based control virus has 10% of its replicative capacity in the absence of 
drug (the IC90 for NL4-3 was used as the reference drug concentration for 
every subsequent measurement). In addition to the fitness measurement 
on and off drugs, all of the protease and the amino acids 1 to 305 of reverse 
transcriptase were sequenced by population sequencing for all virus samples 
included in this analysis.

Note that replicative capacity is different from IC50 and EC50, other com-
monly used phenotypic measures of drug resistance which measure the drug 
concentration at which a virus sample is half maximally inhibited. Previous 
algorithms to predict phenotypic properties of drug resistance have focused on 
the prediction of IC50 (ref. 31). By measuring a drug concentration that causes 
a relative change in activity, IC50 discards information about the absolute fit-
ness. Replicative capacity, however, does not measure a change in activity but 
an absolute activity at a given drug concentration (previously measured as the 
IC90 of the reference NL4-3). Replicative capacity, therefore, is a more appro-
priate measure of viral fitness. However, because replicative capacity meas-
ures absolute activity, it is a more complex phenotypic measure and therefore 
harder to predict. To test this statement, we also tested our algorithm against 
a measure similar to IC50, defined by replicative capacity in presence of drugs 
relative to the corresponding replicative capacity in absence of drugs. This 
simpler fitness resulted in an average predictive power of 89% and a maximum 
predictive power of 95% across all the drug environments.

Amino acid sequences of the protease gene and the partial reverse tran-
scriptase gene were obtained by population sequencing for all virus samples 
included in this analysis6. Because of this population sequencing, sequences 
are defined in terms of probabilities of allele occurrences for each locus. To 
ease computational issues, we did not include any variant that appeared fewer 
than ten times in the entire dataset. The effect of this thresholding on predic-
tive power was less than 0.01%. In our sequence data, there are NM = 1,859 
amino acid variants above the threshold and NE = 802,611 pairwise combina-
tions of these variants (which is a small subset of the theoretically possible 
set of combinations). If main effects or interactions always occur with other 
main effects or interactions, the effect that is attributable to the linked group is 
distributed evenly over all these coefficients as a result of the ridge regression 
methodology employed. Analysis of our data shows that we have altogether 
659,654 independent effects.

Model fitting. We quantified the fitness effects that are attributable to indi-
vidual amino acid variants independent of the genetic context (main effects) 

and the fitness effects attributable to pairwise epistasis between variants (inter-
actions) by fitting the following model:

log( )W I M Ei ij j ik k
j

N

k

NM E
= + +

= =
∑ ∑g c

1 1

Here, Wi is the replicative capacity (fitness) of sequence i. I is the intercept, which 
represents the log fitness of the NL4-3 reference sequence. The parameter γj rep-
resents the main effect of the jth variant and Mij is the probability of that variant 
occurring in a randomly selected sequence from the population i. Similarly, χk 
represents the interaction of the kth combination of variants and Eik is a variable 
that accounts for the presence or absence of that combination of variants in the 
sequence. The ME model uses only the 1,859 Mij terms to compute predicted 
fitness and the MEEP model adds 802,611 Eik terms to this model. These models 
are explained in depth in the Supplementary Note, section 2.

The model is fitted by generalized kernel ridge regression (GKRR), a tech-
nique that combines the fitting of non-normal error structure by the general-
ized linear model (GLM) with the capability of kernel ridge regression to fit data 
with fewer observations than dimensions. We give an intuitive introduction to 
our methodology in the Supplementary Note, section 1.1. A detailed technical 
explanation is provided in the Supplementary Note, sections 1.2 through 1.5, 
and Supplementary Figure 3. The software is available on request.

Statistical analysis. The change of frequency of single amino acid variants 
in HIV-1 protease and reverse transcriptase was determined based on 44,119 
sequences obtained from the Stanford HIV Drug Resistance Database16 derived 
from treated and untreated patients (numbers of sequences: reverse tran-
scriptase, treated = 7,232; reverse transcriptase, untreated = 12,022; protease, 
treated = 10,011; protease, untreated = 14,854; downloaded: 17/09/2009, see 
URLs). The fitness gain was estimated as the difference between the maximal 
beneficial fitness effect of an amino acid variant in presence of drugs versus the 
fitness effect in absence of drugs. Note that fitness effects in different environ-
ments are correlated with drug class being a dominant factor32. Fitness effects 
of the amino acid variant were measured relative to the consensus amino acid 
variant in untreated patients. The significance of the correlation between fit-
ness gain in presence versus absence of drugs and frequency change in treated 
versus untreated patients was calculated based on a Spearman rank correlation 
(N = 1,169 amino acid variants, P ≤ 10−16 and Spearman’s ρ = 0.33).

To test for statistical significance of correlations between epistatic effects 
and protein structure, we used bootstrapping. To this end, we generated boot-
strapped matrices of epistatic interactions by shuffling rows and columns of the 
estimated epistatic interaction matrix. We used 100,000 bootstraps to test to 
infer statistical significance of the enrichment of epistatic interactions within 
HIV-1 protease structural domains and between these structural domains 
and the remainder of the protein. We used 100,000 bootstraps to test to infer 
statistical significance of the Spearman rank correlation coefficient between 
strength of epistatic interactions between amino acid residues and their physi-
cal proximity in the 3D structure of protease.

To obtain values and standard errors for predictive power, sixfold cross 
validation was performed. For each cross-validation we selected two subsets of 
data from our database. The larger dataset, consisting of 65,000 sequences and 
corresponding fitness values, was used to estimate main effects and interac-
tions. The smaller dataset, consisting of 5,000 sequences and fitness values, was 
not used for model fitting but was reserved only for the purpose of quantifying 
the goodness of the model fit in terms of the percentage deviance explained.

Data access. The data underlying this study can be accessed by submitting 
requests to Monogram Biosciences (see data requests, URLs). Access to these 
data is restricted to bona fide researchers under conditions specified in the 
data management plan29 (URLs).
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